| Units of Study
(Duration) | NYS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|--|--|----------------------------------|--|--|---|--| | 2-3 days | | | | What is the history of computers? | | | | | 1 week | negative impacts
on society, de-
pending upon
how it is | CI.L2-02 Demonstrate knowledge of changes in information technologies over time and the effects those changes have on education, the workplace, and society. CI.L2-03 Analyze the positive and negative impacts of computing on human culture. | | How have electronic devices in the last 10 years affected society? | Research
Use of In-
ternet
PowerPoint
Public
speaking
presentation | PowerPoint
presentation that
give history, time-
line, societal ef-
fects, life without | Computers
Internet access
PowerPoint | | 1.5 weeks | | CL.L3A-01 Work in a team to design and develop an artifact Demonstrate Proficiency in the Use of computers And applications As well as an understanding of the concepts underlying the hardware, software and connectivity | CPU
Memory
Peripherals | What makes up a computer system? Internal and external components | Research Use of Internet Budget constraints Working with a partner Decision making | Poster
Focal point Computer System
components | Computer
Internet Access
Color printer | | 1 week | limitations of | Demonstrate the responsi-
ble use of technology and
an understanding of ethics
and safety issues in using | Viruses
Spam | What is Ethic Computing? | | | | | Units of Study
(Duration) | NYS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|---|--|---|---|---------------------|--|---| | | tems is essential
to its effective
and
ethical
use*(standard 5) | electronic media at home,
in school and in society. | | | | | | | 3 weeks | | | Variables
Control Struc-
tures Data
Structures
Syntax Tools | What vocabulary
do I need to be
successful pro-
gramming; What
are the simple ideas
that make up pro-
gramming? | | Vocabulary work-
sheet | Computer
Internet
Infocus projector | | | | | | Who is James Gosling? | | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | You-tube Video
Computer
Infocus projector | | | | | | Why was Java invented? | | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer
Infocus projector | | | | | | What is Polymor-
phism, encapsula-
tion and inher-
itance; how does it
relate to program- | | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer
Infocus projector | | Units of Study
(Duration) | NYS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|-----------------------------------|--|--|---|---|---|--| | | | | | ming in Java. | | | | | | | Develop methods for creating possible solutions, modeling and testing solutions, and modifying proposed design in the solution of a technological problem using hands-on activities. | IDE, 3-D, degrees of freedom, classes, instantiation, objects, orientation | How does Alice fit into Learning to program in Java How do you use Alice? What makes it an IDE? What are classes and object as they relate to Alice? What do you need to know about Objects, orientation, center points and movement? | | Knowledge retention activity | Computer and
Alice
Infocus projector | | 2 days | | | | | | Notes | Computer
Infocus projector | | Multiple
weeks | | | | | | Notes and teacher
observation, mod-
eled to students
Activity in Alice | Computer and
Alice
Infocus projector | | 1 week | | | Criticism, constructive criticism, ideas, brainstorming | Importance of
working on a team | Understand
importance
of working
together to
problem
solve | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | 2 weeks | dents will access, generate, pro- | Develop methods for creating possible solutions, modeling and testing solutions, and modifying proposed design in the solu- | String, Integer
and Double
Data types,
primitive,
while loop | Variables, Functions and User Input Control loops – while | Identify the appropriate variable type and how to use | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | Units of Study
(Duration) | NVS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|--|--|--|---------------------------------------|--|-------------------|--| | | ing appropriate technologies | tion of a technological problem using hands-on | | Play again scenario
Parameters and | | | | | 1 week | Standard 2: Students will access, generate, process, and transfer information using appropriate technologies | | Iteration, accumulation, incrementing, decrementing, for loops, do while | making your own function | How to use iteration to repeat a game | Quizzes, projects | Computer/infocus | | 1 week | Standard 2: Students will access, generate, process, and transfer information using appropriate technologies | | | | How to pass
arguments
for use in a
method | projects | Computer/infocus | | 1-2 week | dents will access,
generate, pro-
cess, and transfer
information us- | 6. Technology problem- solving and decision- making tools Students use technology resources for solving problems and making informed decisions. Students employ technology in the development of strategies for solving problems in the real | | Game making objectives | Rules and conditions of a game | Notes/projects | Computer/infocus | | Units of Study
(Duration) | IN V S Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|--|--|--|-------------------------------------|--|--|--| | | | world. | | | | | | | 1 week | dents will access,
generate, pro-
cess, and transfer
information us- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | If statements,
formatting,
semicolons,
relationship
logical opera-
tors | Decision Structures | How to follow logical sequencing for using conditionals | Notes/projects/
worksheets | Computer/infocus | | 1-3 days | dents will access,
generate, pro-
cess, and transfer
information us-
ing appropriate | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Movement
Sprites
Costumes | Introduction to
Scratch | | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | | | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Coordinates
Backgrounds
Sound
Hats
Blocks | How Scratch is coded | Working
with puzzle
pieces to
code | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | 1-3 weeks | dents will access,
generate, pro-
cess, and transfer | 6. Technology problem-
solving and decision-
making tools
Students use technology | Rules
Playing | Game Develop-
ment using Scratch | Using prior
program-
ming
knowledge
to develop | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | Grand Island Central School District Curriculum Map (Computer Programming Grades 9-12) | | | | | | | | | |--|---|---|---|--------------------------------|--|--|--|--| | Units of Study
(Duration) | NYS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | | | | | | | | | | | | | | ing appropriate
technologies | resources for solving problems and making informed decisions. Students employ technology in the development of strategies for solving problems in the real world. | | | simple
games | | | | | 2-3 days | dents will access,
generate, pro-
cess, and transfer
information us- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Syntax
Logic
Sequential
Random | Introduction to
Java | | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | | 1 week | generate, pro-
cess, and transfer
information us- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Semicolons
Curly braces
Keywords
Pseudocode
Code flow
Source code
Byte code
binary | Syntax of Java | Writing code | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | | 1 -2 weeks | dents will access,
generate, pro- | CC.6-8.R.ST.3 Key Ideas
and Details: Follow pre-
cisely a multistep proce-
dure when carrying out | Prompt
text | Console programming | Program-
ming with
text based
user inter- | Teacher Observa-
tion
Completed Pro-
jects | Computer/infocus | | | Units of Study
(Duration) | | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|---|--|------------------------------------|---|---|--|--| | | information us-
ing appropriate
technologies | experiments, taking measurements, or performing technical tasks. | | | face | Rubrics | | | 2-3 days | generate, pro- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Awt
Input boxes
Dialog boxes | Swing code | Program-
ming GUI
for user in-
terface | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | 1 week | generate, pro- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | Listeners | Applets | Program-
ming for
web applica-
tions | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | 2-3 days | generate, pro-
cess, and transfer
information us- | CC.6-8.R.ST.3 Key Ideas and Details: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. | | How is Java different or the same to JavaScript | Writing code in a webpage | Teacher Observa-
tion
Completed Pro-
jects
Rubrics | Computer/infocus | | 1 week | | | | review | | Teacher Observa-
tion
Completed Pro- | Computer/infocus | | Units of Study
(Duration) | NYS Standards | Common Core Stand-
ards | Vocabulary
Content
Process | Essential/Guiding
Questions | Essential
Skills | Assessment(s) | Resources
Texts
Tech Integration | |------------------------------|---------------|----------------------------|----------------------------------|--------------------------------|---------------------|------------------|--| | | | | | | | jects
Rubrics | |